English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Photoswitchable endocytosis of biomolecular condensates in giant vesicles

MPS-Authors
/persons/resource/persons274984

Mangiarotti,  Agustín       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons274874

Aleksanyan,  Mina       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons292433

Siri,  Macarena       
Cecile Bidan, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons297551

Sun,  Tsu-Wang       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121584

Lipowsky,  Reinhard       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121236

Dimova,  Rumiana       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mangiarotti, A., Aleksanyan, M., Siri, M., Sun, T.-W., Lipowsky, R., & Dimova, R. (2024). Photoswitchable endocytosis of biomolecular condensates in giant vesicles. Advanced Science, 11(23): 2309864. doi:10.1002/advs.202309864.


Cite as: https://hdl.handle.net/21.11116/0000-000E-4DFC-1
Abstract
Interactions between membranes and biomolecular condensates can give rise to complex phenomena such as wetting transitions, mutual remodeling, and endocytosis. In this study, we demonstrate a light-triggered manipulation of condensate engulfment using giant vesicles containing photoswitchable lipids. UV irradiation increases the membrane area, facilitating a rapid condensate endocytosis, which can be reverted by blue light. The affinity of the protein-rich condensates to the membrane and the reversibility of the engulfment processes is quantified from confocal microscopy images. The degree of engulfment, whether partial or complete, depends on the initial membrane excess area and the relative sizes of vesicles and condensates. Theoretical estimates suggest that utilizing the light-induced excess area to increase the vesicles-condensate adhesion interface is energetically more favorable than the energy gain from folding the membrane into invaginations and tubes. Our overall findings demonstrate that membrane-condensate interactions can be easily and quickly modulated via light, providing a versatile system for building platforms to control cellular events and design intelligent drug delivery systems for cell repair.