English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Oxidation-alkaline-enhanced abiotic humification valorizes lignin-rich biogas digestate into artificial humic acids

MPS-Authors
/persons/resource/persons240959

Filonenko,  Svitlana       
Svitlana Filonenko, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sarlaki, E., Ghofrani-Isfahani, P., Ghorbani, M., Benedini, L., Kermani, A.-m., Rezaei, M., et al. (2024). Oxidation-alkaline-enhanced abiotic humification valorizes lignin-rich biogas digestate into artificial humic acids. Journal of Cleaner Production, 435: 140409. doi:10.1016/j.jclepro.2023.140409.


Cite as: https://hdl.handle.net/21.11116/0000-000E-4DE6-9
Abstract
This study introduces a cost-effective, mild thermal abiotic humification method for producing highly humified artificial humic acids (AHAs) from lignin-rich biogas digestate. Derived from the anaerobic digestion of cattle manure, the digestate slurry undergoes an MnO2-KOH-urea-enhanced humification reaction. Key process variables, such as MnO2 dose (0–15 mg/L), KOH dose (0–1 mol/L), urea dose (0–1.2 mol/L), reaction time (30–150 min), and temperature (25–85 °C), were systematically explored to optimize AHA yield, carboxylic acid content, and lignin removal. Optimal conditions, employing 7.69 mg/L of MnO2, 0.57 mol/L of KOH, and 0.63 mol/L of urea at 85 °C for 106 min, resulted in an impressive AHA yield of 32.15%, featuring a significant carboxylic acid content of 3.325 mmol/g. Under these conditions, up to 65% of lignin was effectively removed, accompanied by the release of orthophosphate up to 258 mg/L. The produced AHAs exhibited reduced toxicity, as demonstrated by substantial reductions of 54.13%, 57.14%, and 42.50% in phenols, furfural, and hydroxymethylfurfural, respectively. Notably, the AHAs displayed favorable characteristics, including a lower molecular weight (760.49 g/mol), diminished aromaticity (66.25% reduction), higher humification degree (lower C/N ratio of 8.79), increased oxidation degree (higher O/C ratio of 0.6), and elevated spectral index of humification (higher E4/E6 of 4.58). Analytical techniques, such as FT-IR, XPS, and TGA-MS, revealed chemical resemblance and enhanced functionality of AHAs compared to natural counterparts. Differentiation between AHA, lignin, and humification residues was confirmed through SEM-EDX, ICP-OES, and organic/inorganic carbon analyses. The obtained AHAs exhibit promising characteristics suitable for diverse applications in sustainable agriculture and environmental management.