日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

書籍の一部

Functional and structural brain asymmetries in sign language processing

MPS-Authors
/persons/resource/persons213900

Trettenbrein,  Patrick       
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Experimental Sign Language Laboratory (SignLab), Department of German Philology, University of Göttingen;

/persons/resource/persons23567

Zaccarella,  Emiliano       
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19643

Friederici,  Angela D.       
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Trettenbrein, P., Zaccarella, E., & Friederici, A. D. (in press). Functional and structural brain asymmetries in sign language processing. In Handbook of clinical neurology.


引用: https://hdl.handle.net/21.11116/0000-000E-5554-4
要旨
The capacity for language constitutes a cornerstone of human cognition and distinguishes our species from other animals. Research in the cognitive sciences has demonstrated that this capacity is not bound to speech but can also be externalized in the form of sign language. Sign languages are the naturally occurring languages of the deaf and rely on movements and configurations of hands, arms, face, and torso in space. This chapter reviews the functional and structural organisation of the neural substrates of sign language as identified by neuroimaging research over the past decades. Most aspects of sign language processing in adult deaf signers markedly mirror the well-known functional left-lateralization of spoken and written language. However, both hemispheres exhibit a certain equipotentiality for processing linguistic information and the right hemisphere seems to specifically support processing of some constructions unique to the signed modality. Crucially, the so-called “core language network” in the left hemisphere constitutes a functional and structural asymmetry in typically developed deaf and hearing populations alike: This network is (i) pivotal for processing complex syntax independent of the modality of language use, (ii) matures in accordance with a genetically determined biological matrix, and (iii) may have constituted an evolutionary prerequisite for the emergence of the human capacity for language.