English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

MERLIN: a novel BRET-based proximity biosensor for studying mitochondria-ER contact sites

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

e201900600.full.pdf
(Any fulltext), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hertlein, V., Flores-Romero, H., Das, K. K., Fischer, S., Heunemann, M., Calleja-Felipe, M., et al. (2019). MERLIN: a novel BRET-based proximity biosensor for studying mitochondria-ER contact sites. Life science alliance, 3(1): e201900600. doi:10.26508/lsa.201900600.


Cite as: https://hdl.handle.net/21.11116/0000-000E-5792-B
Abstract
The contacts between the ER and mitochondria play a key role in cellular functions such as the exchange of lipids and calcium between both organelles, as well as in apoptosis and autophagy signaling. The molecular architecture and spatiotemporal regulation of these distinct contact regions remain obscure and there is a need for new tools that enable tackling these questions. Here, we present a new bioluminescence resonance energy transfer-based biosensor for the quantitative analysis of distances between the ER and mitochondria that we call MERLIN (Mitochondria-ER Length Indicator Nanosensor). The main advantages of MERLIN compared with available alternatives are that it does not rely on the formation of artificial physical links between the two organelles, which could lead to artifacts, and that it allows to study contact site reversibility and dynamics. We show the applicability of MERLIN by characterizing the role of the mitochondrial dynamics machinery on the contacts of this organelle with the ER.