English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Influence of Ventilation on Formation and Growth of 1–20 nm Particles via Ozone–Human Chemistry

MPS-Authors
/persons/resource/persons273959

Müller,  Tatjana
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons239555

Wang,  Nijing
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yang, S., Müller, T., Wang, N., Bekö, G., Zhang, M., Merizak, M., et al. (2024). Influence of Ventilation on Formation and Growth of 1–20 nm Particles via Ozone–Human Chemistry. Environmental Science & Technology, 58. doi:10.1021/acs.est.3c08466.


Cite as: https://hdl.handle.net/21.11116/0000-000E-6999-0
Abstract
Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1–20 nm particles generated from ozone–human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone–human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h–1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25–30 ppb ozone levels, humans generated 0.2–7.7 × 1012 of 1–3 nm, 0–7.2 × 1012 of 3–10 nm, and 0–1.3 × 1012 of 10–20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone–human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.