Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Subdiffusive spin transport in disordered classical Heisenberg chains

MPG-Autoren
/persons/resource/persons288805

McRoberts,  Adam J.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons145694

Moessner,  Roderich
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2304.05423.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

McRoberts, A. J., Balducci, F., Moessner, R., & Scardicchio, A. (2023). Subdiffusive spin transport in disordered classical Heisenberg chains. Physical Review B, 108(9): 094204. doi:10.1103/PhysRevB.108.094204.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-6F18-C
Zusammenfassung
We study the transport and equilibration properties of a classical Heisenberg chain, whose couplings are random variables drawn from a one-parameter family of power-law distributions. The absence of a scale in the couplings makes the system deviate substantially from the usual paradigm of diffusive spin hydrodynamics and exhibit a regime of subdiffusive transport with an exponent changing continuously with the parameter of the distribution. We propose a solvable phenomenological model that correctly yields the subdiffusive exponent, thereby linking local fluctuations in the coupling strengths to the long-time, large-distance behavior. It also yields the finite-time corrections to the asymptotic scaling, which can be important in fitting the numerical data. We show how such exponents undergo transitions as the distribution of the coupling gets wider, marking the passage from diffusion to a regime of slow diffusion, and finally to subdiffusion.