Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring Electrophilic Hydrophosphination via Metal Phosphenium Intermediates

MPG-Autoren
/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons296086

Sousa,  Tânia P. A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Belli, R. G., Muir, V., Dyck, N. B., Pantazis, D. A., Sousa, T. P. A., Slusar, C. R., et al. (2024). Exploring Electrophilic Hydrophosphination via Metal Phosphenium Intermediates. Chemistry – A European Journal, 30(16): e202302924. doi:10.1002/chem.202302924.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-734B-D
Zusammenfassung
Two Mo(0) phosphenium complexes containing ancillary secondary phosphine ligands have been investigated with respect to their ability to participate in electrophilic addition at unsaturated substrates and subsequent P−H hydride transfer to “quench” the resulting carbocations. These studies provide stoichiometric “proof of concept” for a proposed new metal-catalyzed electrophilic hydrophosphination mechanism. The more strongly Lewis acidic phosphenium complex, [Mo(CO)4(PR2H)(PR2)]+ (R=Ph, Tolp), cleanly hydrophosphinates 1,1-diphenylethylene, benzophenone, and ethylene, while other substrates react rapidly to give products resulting from competing electrophilic processes. A less Lewis acidic complex, [Mo(CO)3(PR2H)2(PR2)]+, generally reacts more slowly but participates in clean hydrophosphination of a wider range of unsaturated substrates, including styrene, indene, 1-hexene, and cyclohexanone, in addition to 1,1-diphenylethylene, benzophenone, and ethylene. Mechanistic studies are described, including stoichiometric control reactions and computational and kinetic analyses, which probe whether the observed P−H addition actually does occur by the proposed electrophilic mechanism, and whether hydridic P−H transfer in this system is intra- or intermolecular. Preliminary reactivity studies indicate challenges that must be addressed to exploit these promising results in catalysis.