English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huang, Z., Hu, S., Sun, M., Xu, Y., Liu, S., Ren, R., et al. (2024). Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis. Nature Communications, 15: 1097, pp. 1-11. doi:10.1038/s41467-024-45369-x.


Cite as: https://hdl.handle.net/21.11116/0000-000E-A477-3
Abstract
Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru−1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt−1) and PtRu/C (1.24 A mgPt+Ru−1). More importantly, the peak power density and specific power density are as high as 1.84 W cm−2 and 18.4 W mgPt+Ru−1 with a low loading (0.1 mg cm−2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond. © The Author(s) 2024.