Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Prediction and integration of metabolite-protein interactions with genome-scale metabolic models

MPG-Autoren
/persons/resource/persons224672

Razaghi-Moghadam,  Z.
Mathematical Modelling and Systems Biology - Nikoloski, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97320

Nikoloski,  Z.       
Mathematical Modelling and Systems Biology - Nikoloski, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Habibpour, M., Razaghi-Moghadam, Z., & Nikoloski, Z. (2024). Prediction and integration of metabolite-protein interactions with genome-scale metabolic models. Metabolic Engineering, 82, 216-224. doi:10.1016/j.ymben.2024.02.008.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-7717-3
Zusammenfassung
Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the in silico analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of Escherichia coli and Saccharomyces cerevisiae. Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.