English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Oscillatory waveform shape and temporal spike correlations differ across bat frontal and auditory cortex

MPS-Authors

García-Rosales,  Francisco
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Poeppel Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Schaworonkow,  Natalie
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Poeppel Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

García-Rosales, F., Schaworonkow, N., & Hechavarria, J. C. (2024). Oscillatory waveform shape and temporal spike correlations differ across bat frontal and auditory cortex. The Journal of Neuroscience, e1236232023. doi:10.1523/JNEUROSCI.1236-23.2023.


Cite as: https://hdl.handle.net/21.11116/0000-000E-9D1D-2
Abstract
Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in cortex relates to local physiology, and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e. in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shape, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in frontal and auditory cortex possess distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.