English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Paying attention to natural scenes in area V1

MPS-Authors

Lazar,  Andreea
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Klein,  Liane
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Klon-Lipok,  Johanna
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141798

Singer,  Wolf       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Lazar_2024_PayingAttention.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Lazar, A., Klein, L., Klon-Lipok, J., Bányai, M., Orbán, G., & Singer, W. (2024). Paying attention to natural scenes in area V1. iScience, 27(2): 108816. doi:10.1016/j.isci.2024.108816.


Cite as: https://hdl.handle.net/21.11116/0000-000E-9D5D-A
Abstract
Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. We hypothesized that attentional and contextual signals interact in V1 in a manner that primarily benefits the representation of natural stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we found that attention enhanced the decodability of stimulus identity from population responses evoked by natural scenes, but not by synthetic stimuli lacking higher-order statistical regularities. Population analysis revealed that neuronal responses converged to a low-dimensional subspace only for natural stimuli. Critically, we determined that the attentional enhancement in stimulus decodability was captured by the natural-scene subspace, indicating an alignment between the attentional and natural stimulus variance. These results suggest that attentional and contextual signals interact in V1 in a manner optimized for natural vision.