Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Induced quantum magnetism in crystalline electric field singlet ground state models: Thermodynamics and excitations

MPG-Autoren
/persons/resource/persons126879

Thalmeier,  Peter
Peter Thalmeier, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thalmeier, P., & Akbari, A. (2024). Induced quantum magnetism in crystalline electric field singlet ground state models: Thermodynamics and excitations. Physical Review B, 109: 115110, pp. 1-20. doi:10.1103/PhysRevB.109.115110.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-2520-3
Zusammenfassung
We present a comparative investigation of singlet ground state induced magnetism for singlet, doublet, and triplet excited CEF states of non-Kramers f electrons relevant primarily for Pr- and U-based compounds. This type of magnetic order is of the intrinsic quantum nature because it requires the superposition of singlet ground state with excited states due to nondiagonal matrix elements of the effective intersite exchange to generate local moments. In contrast to conventional magnets, the local moments and their ordering appear simultaneously at the transition temperature. It is finite only if the control parameter proportional to the ratio of exchange strength to level splitting exceeds a critical value marking the quantum critical point of the models. We determine the dependence of transition temperature, saturation moment, renormalized level splitting, specific heat jumps, and low-temperature susceptibility as a function of control parameters. Furthermore, the temperature dependence of these quantities is calculated for control parameters above and below the quantum critical point and the distinction to conventional magnetism is discussed. In addition, we investigate the dynamical properties of the three models, deriving the magnetic exciton dispersion and their critical behavior. In particular, the conditions for true and arrested soft-mode behavior at the ordering wave vector are identified. © 2024 American Physical Society.