English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Measurement of suppression of large-radius jets and its dependence on substructure in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

MPS-Authors

ATLAS Collaboration, 
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

ATLAS Collaboration (2023). Measurement of suppression of large-radius jets and its dependence on substructure in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector. Physical Review Letters, 131, 172301. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2023-25.


Cite as: https://hdl.handle.net/21.11116/0000-000F-1146-F
Abstract
This letter presents a measurement of the nuclear modification factor of large-radius jets in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb collisions by the ATLAS experiment. The measurement is performed using 1.72 nb$^{-1}$ and 257 pb$^{-1}$ of Pb+Pb and $pp$ data, respectively. The large-radius jets are reconstructed with the anti-$k_{t}$ algorithm using a radius parameter of $R = 1.0$, by re-clustering anti-$k_{t}$ $R = 0.2$ jets, and are measured over the kinematic range of $158 < p_{\mathrm{T}} < 1000$ GeV and $|y|<2.0$. The large-radius jet constituents are further re-clustered using the $k_{t}$ algorithm in order to obtain the splitting parameters, $\sqrt{d_{12}}$ and $\Delta R_{12}$, which characterize the transverse momentum scale and angular separation for the hardest splitting in the jet, respectively. The nuclear modification factor, $R_{\mathrm{AA}}$, obtained by comparing the Pb+Pb jet yields to those in $pp$ collisions, is measured as a function of jet transverse momentum ($p_{\mathrm{T}}$) and $\sqrt{d_{12}}$ or $\Delta R_{12}$. A significant difference in the quenching of large-radius jets having single sub-jet and those with more complex substructure is observed. Systematic comparison of jet suppression in terms of $R_{\mathrm{AA}}$ for different jet definitions is also provided. Presented results support the hypothesis that jets with hard internal splittings lose more energy through quenching and provide a new perspective for understanding the role of jet structure in jet suppression.