English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

MPS-Authors

ATLAS Collaboration, 
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

ATLAS Collaboration (2023). Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data. Journal of High Energy Physics, 04, 080. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2022-265.


Cite as: https://hdl.handle.net/21.11116/0000-000F-12CA-9
Abstract
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13$~\text{TeV}$ proton--proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500$~$GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500~$GeV and $p_{\text{T}} > 350~$GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}~$fb. This is approximately 20\% lower than the prediction of $398^{+48}_{-49}~$fb by Powheg+Pythia$~$8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}~$pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}~$pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.