English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adsorption an Einkristall-Oberflächen von Cu/Ni-legierungen. I

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ertl, G., & Küppers, J. (1971). Adsorption an Einkristall-Oberflächen von Cu/Ni-legierungen. I. Surface Science, 24(1), 104-124. doi:10.1016/0039-6028(71)90222-6.


Cite as: https://hdl.handle.net/21.11116/0000-000F-456C-B
Abstract
The adsorption of O2 and CO on the (110) face of a Cu/Ni alloy (55 at% Cu) has been studied by means of low energy electron diffraction (LEED), Auger electron spectroscopy, work function measurements, and flash desorption. A comparison with the behavior of Cu(110) and Ni(110) is made. It is shown that the height of an Auger peak is proportional to the surface concentration of the corresponding species and that the surface composition of the alloy is identical with the composition of the bulk. Adsorption of oxygen leads to the formation of an ordered 2 × 1 structure, as is the case for Cu(110) and Ni(110). Further exposure causes disordered adsorption in contrast to the pure components where c6 × 2 respectively 3 × 1 structures are formed. Oxygen increases the work function of Cu and Cu/Ni by about 0.25 eV whereas for Ni the increase is > 1 eV. CO is not irreversibly adsorbed on Cu at 25°C, but forms a stable 1 × 1 structure on Ni(110). With the alloy two ordered phases (2 × 1 and 2 × 2) are observed. The flash desorption spectrum shows three maxima which are similar to the binding states of CO on Ni(110) and Ni(100). The results are discussed in view of the electronic structure of Cu/Ni alloys and the parameters influencing the configuration of adsorbed particles.