English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural and mechanistic basis of the central energy-converting methyltransferase complex of methanogenesis

MPS-Authors
/persons/resource/persons275265

Aziz,  Iram       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons226884

Kayastha,  Kanwal       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons198630

Kaltwasser,  Susann       
Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137933

Vonck,  Janet       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons250130

Welsch,  Sonja       
Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons206473

Murphy,  Bonnie J.       
Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons250197

Wu,  Di       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137648

Ermler,  Ulrich       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Aziz, I., Kayastha, K., Kaltwasser, S., Vonck, J., Welsch, S., Murphy, B. J., et al. (2024). Structural and mechanistic basis of the central energy-converting methyltransferase complex of methanogenesis. PNAS, 121(14): e2315568121. doi:10.1073/pnas.2315568121.


Cite as: https://hdl.handle.net/21.11116/0000-000F-1818-C
Abstract
Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by N    5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Å cryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.