Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Cavity electrodynamics of van der Waals heterostructures

MPG-Autoren
/persons/resource/persons247662

Kipp,  G.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons286617

Bretscher,  H.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons214000

Schulte,  B.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Columbia University;

/persons/resource/persons297363

Herrmann,  D.
Microstructured Quantum Matter Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons297365

Kusyak,  K.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Columbia University;

/persons/resource/persons297367

Day,  M.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Columbia University;

Kesavan,  S.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons227397

Matsuyama,  T.
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons297369

Li,  X.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Langner,  S. M.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Hagelstein,  J.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Potts,  A. M.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons258618

Eckhardt,  C.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics, Simons Foundation Flatiron Institute;
Nano-BioSpectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco;

/persons/resource/persons245033

Kennes,  D. M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology;

/persons/resource/persons182604

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen;

/persons/resource/persons141017

Meier,  G.
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons280912

Michael,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons198728

McIver,  J. W.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Columbia University;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2403.19745.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kipp, G., Bretscher, H., Schulte, B., Herrmann, D., Kusyak, K., Day, M., et al. (2024). Cavity electrodynamics of van der Waals heterostructures.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-1C04-E
Zusammenfassung
Van der Waals (vdW) heterostructures host many-body quantum phenomena that can be tuned in situ using electrostatic gates. These gates are often microstructured graphite flakes that naturally form plasmonic cavities, confining light in discrete standing waves of current density due to their finite size. Their resonances typically lie in the GHz - THz range, corresponding to the same μeV - meV energy scale characteristic of many quantum effects in the materials they electrically control. This raises the possibility that built-in cavity modes could be relevant for shaping the low-energy physics of vdW heterostructures. However, capturing this light-matter interaction remains elusive as devices are significantly smaller than the diffraction limit at these wavelengths, hindering far-field spectroscopic tools. Here, we report on the sub-wavelength cavity electrodynamics of graphene embedded in a vdW heterostructure plasmonic microcavity. Using on-chip THz spectroscopy, we observed spectral weight transfer and an avoided crossing between the graphite cavity and graphene plasmon modes as the graphene carrier density was tuned, revealing their ultrastrong coupling. Our findings show that intrinsic cavity modes of metallic gates can sense and manipulate the low-energy electrodynamics of vdW heterostructures. This opens a pathway for deeper understanding of emergent phases in these materials and new functionality through cavity control.