Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Molecular handcraft of a well-folded protein chimera

MPG-Autoren
/persons/resource/persons272840

Toledo-Patiño,  S       
Research Group Protein Design, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons283356

Goetz,  SK       
Research Group Protein Design, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272276

Shanmugaratnam,  S       
Research Group Protein Design, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271758

Hoecker,  B       
Research Group Protein Design, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272842

Farías-Rico,  JA       
Research Group Protein Design, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Toledo-Patiño, S., Goetz, S., Shanmugaratnam, S., Hoecker, B., & Farías-Rico, J. (2024). Molecular handcraft of a well-folded protein chimera. FEBS Letters, Epub ahead. doi:10.1002/1873-3468.14856.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-1E9A-3
Zusammenfassung
Modular assembly is a compelling pathway to create new proteins, a concept supported by protein engineering and millennia of evolution. Natural evolution provided a repository of building blocks, known as domains, which trace back to even shorter segments that underwent numerous 'copy-paste' processes culminating in the scaffolds we see today. Utilizing the subdomain-database Fuzzle, we constructed a fold-chimera by integrating a flavodoxin-like fragment into a periplasmic binding protein. This chimera is well-folded and a crystal structure reveals stable interfaces between the fragments. These findings demonstrate the adaptability of α/β-proteins and offer a stepping stone for optimization. By emphasizing the practicality of fragment databases, our work pioneers new pathways in protein engineering. Ultimately, the results substantiate the conjecture that periplasmic binding proteins originated from a flavodoxin-like ancestor.