English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adhesion energy controls lipid binding-mediated endocytosis

MPS-Authors
/persons/resource/persons297513

Schmidt,  Kita
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121236

Dimova,  Rumiana       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons122009

Weikl,  Thomas R.       
Thomas Weikl, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Groza, R., Schmidt, K., Müller, P. M., Ronchi, P., Schlack-Leigers, C., Neu, U., et al. (2024). Adhesion energy controls lipid binding-mediated endocytosis. Nature Communications, 15: 2767. doi:10.1038/s41467-024-47109-7.


Cite as: https://hdl.handle.net/21.11116/0000-000F-20D9-8
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.