Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries


Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Wang, B., Ma, J., Wang, K., Wang, D., Xu, G., Wang, X., et al. (2024). High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries. Advanced Energy Materials, 14(23): 2401090, pp. 1-8. doi:10.1002/aenm.202401090.

Cite as: https://hdl.handle.net/21.11116/0000-000F-3766-1
O3-type layered oxides are considered as one of the most promising cathode materials for rechargeable sodium-ion batteries (SIBs) due to their appealing energy density and feasible synthesis. Nevertheless, it undergoes complicated phase transitions and pronounced structural degradation during the cycling of charge/discharge process, rendering severe volumetric strain and poor cycling performance. Herein, a zero-strain high-entropy NaNi0.2Fe0.2Mn0.35Cu0.05Zn0.1Sn0.1O2 cathode for SIBs is presented by high-entropy phase stabilization engineering. It is verified that this low-nickel cobalt-free high-entropy cathode can deliver a highly reversible phase evolution, zero volumetric strain, and a significantly improved cycling performance in full cells (87% capacity retention after 500 cycles at 3.0 C). Combining X-ray absorption spectra and first-principles calculations, the varied elemental functions in the high-entropy framework are clearly elucidated, namely, Ni/Fe/Cu acts as charge compensators, while Mn/Zn/Sn serve as interlayer slipping inhibitors through enhanced charge localization besides their stable valence states. By addressing the volumetric strain and cycling instability concerns for O3-type cathode materials, this work presents a promising strategy for inhibiting irreversible phase transitions and structural degradation in intercalation electrodes, which significantly boosts the development of commercially feasible cathodes for high-performance SIBs. © 2024 Wiley-VCH GmbH.