Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamical Tidal Response of Kerr Black Holes from Scattering Amplitudes

MPG-Autoren
/persons/resource/persons258454

Saketh,  M. V. S.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2307.10391.pdf
(Preprint), 990KB

PhysRevD.109.064058.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Saketh, M. V. S., Zhou, Z., & Ivanov, M. M. (2024). Dynamical Tidal Response of Kerr Black Holes from Scattering Amplitudes. Physical Review D, 109(6): 064058. doi:10.1103/PhysRevD.109.064058.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-2858-2
Zusammenfassung
We match scattering amplitudes in point particle effective field theory (EFT)
and general relativity to extract low frequency dynamical tidal responses of
rotating (Kerr) black holes to all orders in spin. In the conservative sector,
we study local worldline couplings that correspond to the time-derivative
expansion of the black hole tidal response function. These are dynamical
(frequency-dependent) generalizations of the static Love numbers. We identify
and extract couplings of three types of subleading local worldline operators:
the curvature time derivative terms, the spin - curvature time derivative
couplings, and quadrupole - octupole mixing operators that arise due to the
violation of spherical symmetry. The first two subleading couplings are
non-zero and exhibit a classical renormalization group running; we explicitly
present their scheme-independent beta functions. The conservative mixing terms,
however, vanish as a consequence of vanishing static Love numbers. In the
non-conservative sector, we match the dissipation numbers at next-to-leading
and next-to-next-to leading orders in frequency. In passing, we identify terms
in the general relativity absorption probabilities that originate from tails
and short-scale logarithmic corrections to the lowest order dissipation
contributions.