Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

DCMIP2016: The tropical cyclone test case

MPG-Autoren
/persons/resource/persons37156

Giorgetta,  Marco A.       
Wave Driven Circulations, Department Climate Physics, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

gmd-17-2493-2024.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Willson, J. L., Reed, K. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., et al. (2024). DCMIP2016: The tropical cyclone test case. Geoscientific Model Development, 17, 2493 – 2507. doi:10.5194/gmd-17-2493-2024.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-2C71-1
Zusammenfassung
This paper describes and analyzes the Reed-Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environment. Reference solutions from nine general circulation models (GCMs) with identical simplified physics parameterization packages that participated in DCMIP2016 are analyzed in this study at 50gkm horizontal grid spacing, with five of these models also providing solutions at 25gkm grid spacing. Evolution of minimum surface pressure (MSP) and maximum 1gkm azimuthally averaged wind speed (MWS), the wind-pressure relationship, radial profiles of wind speed and surface pressure, and wind composites are presented for all participating GCMs at both horizontal grid spacings. While all TCs undergo a similar evolution process, some reach significantly higher intensities than others, ultimately impacting their horizontal and vertical structures. TCs simulated at 25gkm grid spacings retain these differences but reach higher intensities and are more compact than their 50gkm counterparts. These results indicate that dynamical core choice is an essential factor in GCM development, and future work should be conducted to explore how specific differences within the dynamical core affect TC behavior in GCMs. © 2024 Copernicus Publications. All rights reserved.