English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Unlocking Four-electron Conversion in Tellurium Cathodes for Advanced Magnesium-based Dual-ion Batteries

MPS-Authors
/persons/resource/persons294771

Morag,  Ahuid       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons290667

Li,  Xiaodong       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons47863

Feng,  Xinliang       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Angew Chem Int Ed-2024-Morag.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Morag, A., Chu, X., Marczewski, M., Kunigkeit, J., Neumann, C., Sabaghi, D., et al. (2024). Unlocking Four-electron Conversion in Tellurium Cathodes for Advanced Magnesium-based Dual-ion Batteries. Angewandte Chemie International Edition, e202401818. doi:10.1002/anie.202401818.


Cite as: https://hdl.handle.net/21.11116/0000-000F-2EF2-D
Abstract
Magnesium (Mg) batteries hold promise as a large-scale energy storage solution, but their progress has been hindered by the lack of high-performance cathodes. Here, we address this challenge by unlocking the reversible four-electron Te0/Te4+ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual-ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2), which initiates the Te0/Te4+ conversion with two distinct charge-storage steps. Te cathode undergoes Te/TeCl4 conversion involving Cl as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh gTe−1 and an outstanding energy density of 850 Wh kgTe−1, outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI)2 reduces the overall ion-molecule interaction and mitigates the strength of ion-solvent aggregation within the MACC electrolyte, which implies the facilized Cl dissociation from the electrolyte. Besides, Mg(TFSI)2 is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl2 in Mg//Te dual-ion cells. These findings provide crucial insights into the development of advanced Mg-based dual-ion batteries.