English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors

MPS-Authors
/persons/resource/persons269450

Moon,  Sanghwa
Paolo Giusto, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons285117

Senokos,  Evgeny
Paolo Giusto, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons202218

Loeffler,  Felix F.
Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons229032

Strauß,  Volker
Volker Strauß, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Moon, S., Senokos, E., Trouillet, V., Loeffler, F. F., & Strauß, V. (2024). Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors. Nanoscale, 16(17), 8627-8638. doi:10.1039/D4NR00588K.


Cite as: https://hdl.handle.net/21.11116/0000-000F-31E0-C
Abstract
Laser carbonization is a rapid method to produce functional carbon materials for electronic devices, but many typical carbon precursors are not sustainable and/or require extensive processing for electrochemical applications. Here, a sustainable concept to fabricate laser patterned carbon (LP-C) electrodes from biomass-derived sodium lignosulfonate, an abundant waste product from the paper industry is presented. By introducing an adhesive polymer interlayer between the sodium lignosulfonate and a graphite foil current collector, stable, abrasion-resistant LP-C electrodes can be fabricated in a single laser irradiation step. The electrode properties can be systematically tuned by controlling the laser processing parameters. The optimized LP-C electrodes demonstrate a promising performance in supercapacitors and electrochemical dopamine biosensors. They exhibit high areal capacitances of 38.9 mF cm-2 in 1 M H2SO4 and high energy and power densities of 4.3 μW h cm-2 and 16 mW cm-2 in 17 M NaClO4, showing the best performance among biomass-derived LP-C materials reported so far. After 20 000 charge/discharge cycles, they retain a high capacitance of 81%. Dopamine was linearly detected in the range of 0.1 to 20 μM with an extrapolated limit of detection of 0.5 μM (S/N = 3) and high sensitivity (13.38 μA μM-1 cm-2), demonstrating better performance than previously reported biomass-derived LP-C dopamine sensors.