English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Linear resistivity at van Hove singularities in twisted bilayer WSe2

MPS-Authors
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, Rheinisch-Westfälische Technische Hochschule Aachen University and Jülich Aachen Research Alliance-Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons221904

Xian,  L. D.
Songshan Lake Materials Laboratory, Dongguan;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Center for Computational Quantum Physics, Simons Foundation Flatiron Institute;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)

pnas.2321665121.sapp.pdf
(Supplementary material), 16MB

Citation

Wei, L., Xu, Q., He, Y., Li, Q., Huang, Y., Zhu, W., et al. (2024). Linear resistivity at van Hove singularities in twisted bilayer WSe2. PNAS, 121(16): e2321665121. doi:10.1073/pnas.2321665121.


Cite as: https://hdl.handle.net/21.11116/0000-000F-3ECB-8
Abstract
Different mechanisms driving a linear temperature dependence of the resistivity ρ ∼ T at van Hove singularities (VHSs) or metal-insulator transitions when doping a Mott insulator are being debated intensively with competing theoretical proposals. We experimentally investigate this using the exceptional tunability of twisted bilayer (TB) WSe2 by tracking the parameter regions where linear-in-T resistivity is found in dependency of displacement fields, filling, and magnetic fields. We find that even when the VHSs are tuned rather far away from the half-filling point and the Mott insulating transition is absent, the T-linear resistivity persists at the VHSs. When doping away from the VHSs, the T-linear behavior quickly transitions into a Fermi liquid behavior with a T2 relation. No apparent dependency of the linear-in-T resistivity, besides a rather strong change of prefactor, is found when applying displacement fields as long as the filling is tuned to the VHSs, including D ∼ 0.28 V/nm where a high-order VHS is expected. Intriguingly, such non-Fermi liquid linear-in-T resistivity persists even when magnetic fields break the spin-degeneracy of the VHSs at which point two linear in T regions emerge, for each of the split VHSs separately. This points to a mechanism of enhanced scattering at generic VHSs rather than only at high-order VHSs or by a quantum critical point during a Mott transition. Our findings provide insights into the many-body consequences arising out of VHSs, especially the non-Fermi liquid behavior found in moiré materials.