English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synergistic Effects of Silica-Supported Iron−Cobalt Catalysts for CO2 Reduction to Prebiotic Organics

MPS-Authors
/persons/resource/persons265762

Belthle,  Kendra S.
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Belthle, K. S., Martin, W. F., & Tüysüz, H. (2024). Synergistic Effects of Silica-Supported Iron−Cobalt Catalysts for CO2 Reduction to Prebiotic Organics. ChemCatChem, 16(11): e202301218. doi:10.1002/cctc.202301218.


Cite as: https://hdl.handle.net/21.11116/0000-000F-427E-A
Abstract
To test the ability of geochemical surfaces in serpentinizing hydrothermal systems to catalyze reactions from which metabolism arose, we investigated H2-dependent CO2 reduction toward metabolic intermediates over silica-supported Co−Fe catalysts. Supported catalysts converted CO2 to various products at 180 °C and 2.0 MPa. The liquid product phase included formate, acetate, and ethanol, while the gaseous product phase consisted of CH4, CO, methanol, and C2−C7 linear hydrocarbons. The 1/1 ratio CoFe alloy with the same composition as the natural mineral wairauite yielded the highest concentrations of formate (6.0 mM) and acetate (0.8 mM), which are key intermediates in the acetyl-coenzyme A (acetyl-CoA) pathway of CO2 fixation. While Co-rich catalysts were proficient at hydrogenation, yielding mostly CH4, Fe-rich catalysts favored the formation of CO and methanol. Mechanistic studies indicated intermediate hydrogenation and C−C coupling activities of alloyed CoFe, in contrast to physical mixtures of both metals. Co in the active site of Co−Fe catalysts performed a similar reaction as tetrapyrrole-coordinated Co in the corrinoid iron-sulfur (CoFeS) methyl transferase in the acetyl-CoA pathway. In a temperature range characteristic for deeper regions of serpentinizing systems, oxygenate product formation was favored at lower, more biocompatible temperatures.