Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Observation of quantum interference of optical transition pathways in Doppler-free two-photon spectroscopy and implications for precision measurements

MPG-Autoren
/persons/resource/persons268207

Wright,  Sidney       
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevA.109.042820.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rahaman, B., Wright, S., & Dutta, S. (2024). Observation of quantum interference of optical transition pathways in Doppler-free two-photon spectroscopy and implications for precision measurements. Physical Review A, 109(4): 042820. doi:10.1103/PhysRevA.109.042820.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-4282-3
Zusammenfassung
Doppler-free two-photon (DFTP) spectroscopy is a standard technique for precision measurement of transition frequencies of dipole-forbidden transitions. Here, we report the observation of quantum interference (QI) of optical transition pathways in DFTP spectroscopy of the cesium 6S−7D transitions chosen as a prototype system. The QI manifests itself as asymmetric line shapes of the hyperfine lines of the 7D states, observed through spontaneous emission following excitation by a narrow-linewidth cw laser. The interference persists despite the lines being spectrally well resolved. Ignoring the effect and fitting the spectrum to a Voigt profile causes large systematic shifts in the determination of the line centers, while accounting for QI resolves the apparent line shift and enables the precise determination of hyperfine splitting in the 7D states. We calculate the spectral line shape including the effect of QI and show that it agrees with the experimental observations. Our results are broadly applicable to other species and have implications for portable secondary optical clocks and precision measurements of hyperfine splittings, isotope shifts, and transition frequencies.