English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass : an evolution from carbonization to humification

MPS-Authors
/persons/resource/persons240959

Filonenko,  Svitlana       
Svitlana Filonenko, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus       
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Marzban, N., Libra, J. A., Rotter, V. S., Herrmann, C., Ro, K. S., Filonenko, S., et al. (2024). Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification. Biochar, 6(1): 44. doi:10.1007/s42773-024-00334-1.


Cite as: https://hdl.handle.net/21.11116/0000-000F-4D03-8
Abstract
Hydrothermal carbonization (HTC) converts wet biomass into hydrochar and a process liquid, but aromatic compounds in the products have been reported as a roadblock for soil applications as they can inhibit germination, plant growth, and soil microbial activity. Here, we compared HTC and hydrothermal humification (HTH) of cow manure digestate while varying the initial alkaline content by adding KOH. HTH converted 37.5 wt% of the feedstock to artificial humic acids (A-HAs) found in both solid and liquid, twice that of HTC. HTH reduced phenolic and furanic aromatic compounds by over 70% in solids and 90% in liquids. The A-HAs in HTH resemble natural humic acids (N-HA), based on FTIR, UV–vis spectra, and CHN and XRD analysis. The HTH liquid possesses 60% higher total organic carbon (TOC) than HTC. Although one-third of TOC can be precipitated as A-HA, a high TOC concentration remains in the liquid, which is shown to be mainly organic acids. Therefore, we also evaluated the HTC and HTH liquids for anaerobic biomethane production, and found that compared to the original cow manure digestate, the HTH liquids increased methane yield by 110.3 to 158.6%, a significant enhancement relative to the 17.2% increase seen with HTC liquid. The strong reduction in organic acids during biogas production from HTH liquid indicates the potential for converting soluble byproducts into methane, while maintaining high A-HAs levels in the solid product.