Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Metallic local-moment magnetocalorics as a route to cryogenic refrigeration

MPG-Autoren
/persons/resource/persons228423

Banda,  Jacintha
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126614

Geibel,  Christoph
Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126548

Brando,  Manuel
Manuel Brando, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gruner, T., Chen, J., Jang, D., Banda, J., Geibel, C., Brando, M., et al. (2024). Metallic local-moment magnetocalorics as a route to cryogenic refrigeration. Communications Materials, 5(63), 1-7. doi:10.1038/s43246-024-00494-4.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-5AB3-2
Zusammenfassung
Commercial adiabatic demagnetisation refrigerators still employ the same hydrated salts that were first introduced over 85 years ago. The inherent limitations of these insulating magnetocalorics – poor thermal conductivity at sub-Kelvin temperatures, low entropy density, corrosiveness – can be overcome by a new generation of rare-earth based metallic magnetocalorics. Here, we present the metallic magnetocaloric YbNi1.6Sn as an attractive alternative to conventional refrigerants. YbNi1.6Sn retains high entropy into the 100 mK regime and avoids the noble metal constituents of alternative refrigerants. Demagnetisation tests demonstrate that YbNi1.6Sn enables economical and durable alternatives to traditional cooling devices for temperatures reaching below 120 mK. We find that the magnetocaloric properties of this material are facilitated by unusually small Kondo and RKKY interactions, which position YbNi1.6Sn in the extreme local moment limit on the generalised Kondo lattice phase diagram. © The Author(s) 2024.