English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Towards the understanding of convective dissolution in confined porous media: thin bead pack experiments, two-dimensional direct numerical simulations and physical models

MPS-Authors
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Publisher Version
(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

De Paoli, M., Howland, C., Verzicco, R., & Lohse, D. (2024). Towards the understanding of convective dissolution in confined porous media: thin bead pack experiments, two-dimensional direct numerical simulations and physical models. Journal of Fluid Mechanics, 987: A1. doi:10.1017/jfm.2024.328.


Cite as: https://hdl.handle.net/21.11116/0000-000F-677D-2
Abstract
We consider the process of convective dissolution in a homogeneous and isotropic porous medium. The flow is unstable due to the presence of a solute that induces a density difference responsible for driving the flow. The mixing dynamics is thus driven by a Rayleigh–Taylor instability at the pore scale. We investigate the flow at the scale of the pores using Hele-Shaw type experiment with bead packs, two-dimensional direct numerical simulations and physical models. Experiments and simulations have been specifically designed to mimic the same flow conditions, namely matching porosities, high Schmidt numbers and linear dependency of fluid density with solute concentration. In addition, the solid obstacles of the medium are impermeable to fluid and solute. We characterise the evolution of the flow via the mixing length, which quantifies the extension of the mixing region and grows linearly in time. The flow structure, analysed via the centreline mean wavelength, is observed to grow in agreement with theoretical predictions. Finally, we analyse the dissolution dynamics of the system, quantified through the mean scalar dissipation, and three mixing regimes are observed. Initially, the evolution is controlled by diffusion, which produces solute mixing across the initial horizontal interface. Then, when the interfacial diffusive layer is sufficiently thick, it becomes unstable, forming finger-like structures and driving the system into a convection-dominated phase. Finally, when the fingers have grown sufficiently to touch the horizontal boundaries of the domain, the mixing reduces dramatically due to the absence of fresh unmixed fluid. With the aid of simple physical models, we explain the physics of the results obtained numerically and experimentally. The solute evolution presents a self-similar behaviour, and it is controlled by different length scales in each stage of the mixing process, namely the length scale of diffusion, the pore size and the domain height.