Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dichotomous dynamics of magnetic monopole fluids

MPG-Autoren
/persons/resource/persons202053

Jerzembeck,  Fabian
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons246546

Davis,  J. C. Séamus
J. C. Séamus Davis, Max Planck Fellow, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hsu, C.-C., Takahashi, H., Jerzembeck, F., Dasini, J., Carroll, C., Dusad, R., et al. (2024). Dichotomous dynamics of magnetic monopole fluids. PNAS, 121(21): 2320384121, pp. 1 of 7-7 of 7. doi:10.1073/pnas.2320384121.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-5AA2-5
Zusammenfassung
A recent advance in the study of emergent magnetic monopoles was the discovery that monopole motion is restricted to dynamical fractal trajectories [J. N. Hallén et al., Science378, 1218 (2022)], thus explaining the characteristics of magnetic monopole noise spectra [R. Dusad et al., Nature571, 234 (2019); A. M. Samarakoon et al., Proc. Natl. Acad. Sci. U.S.A.119, e2117453119 (2022)]. Here, we apply this novel theory to explore the dynamics of field-driven monopole currents, finding them composed of two quite distinct transport processes: initially swift fractal rearrangements of local monopole configurations followed by conventional monopole diffusion. This theory also predicts a characteristic frequency dependence of the dissipative loss angle for AC field-driven currents. To explore these novel perspectives on monopole transport, we introduce simultaneous monopole current control and measurement techniques using SQUID-based monopole current sensors. For the canonical material Dy2Ti2O7, we measure [Formula: see text], the time dependence of magnetic flux threading the sample when a net monopole current [Formula: see text] is generated by applying an external magnetic field [Formula: see text] These experiments find a sharp dichotomy of monopole currents, separated by their distinct relaxation time constants before and after t ~[Formula: see text] from monopole current initiation. Application of sinusoidal magnetic fields [Formula: see text] generates oscillating monopole currents whose loss angle [Formula: see text] exhibits a characteristic transition at frequency [Formula: see text] over the same temperature range. Finally, the magnetic noise power is also dichotomic, diminishing sharply after t ~[Formula: see text]. This complex phenomenology represents an unprecedented form of dynamical heterogeneity generated by the interplay of fractionalization and local spin configurational symmetry.