English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Element-specific ultrafast lattice dynamics in monolayer WSe2

MPS-Authors
/persons/resource/persons298714

Jung,  Hyein       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons206871

Dong,  Shuo
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons195530

Zahn,  Daniela
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons138038

Vasileiadis,  Thomas       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons222712

Seiler,  Helene       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons269274

Taylor,  Victoria
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons203272

Windsor,  Yoav William       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:2405.17099.pdf
(Preprint), 704KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jung, H., Dong, S., Zahn, D., Vasileiadis, T., Seiler, H., Schneider, R., et al. (in preparation). Element-specific ultrafast lattice dynamics in monolayer WSe2.


Cite as: https://hdl.handle.net/21.11116/0000-000F-5AC1-2
Abstract
We study monolayer WSe2 using ultrafast electron diffraction. We introduce an approach to quantitatively extract atomic-site-specific information, providing an element-specific view of incoherent atomic vibrations following femtosecond excitation. Via differences between W and Se vibrations, we identify stages in the nonthermal evolution of the lattice. Combined with a calculated phonon dispersion, this element specificity enables us to identify a long-lasting overpopulation of specific optical phonons, and to interpret the stages as energy transfer processes between specific phonon groups. These results demonstrate the appeal of resolving element-specific vibrational information in the ultrafast time domain.