Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Terahertz parametric amplification as a reporter of exciton condensate dynamics

MPG-Autoren
/persons/resource/persons243124

Windgätter,  L.
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Latini,  S.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics, The Flatiron Institute;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2304.09249.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)

suppl.zip
(Ergänzendes Material), 4MB

Zitation

Haque, S. R. U., Michael, M. H., Zhu, J., Zhang, Y., Windgätter, L., Latini, S., et al. (2024). Terahertz parametric amplification as a reporter of exciton condensate dynamics. Nature Materials, 23(6), 796-802. doi:10.1038/s41563-023-01755-2.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-6001-3
Zusammenfassung
Condensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron–hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice. Here we employ nonlinear terahertz spectroscopy to disentangle such obscurants through measurement of the quantum dynamics. We target Ta2NiSe5, a putative room-temperature excitonic insulator in which electron–lattice coupling dominates the structural transition (Tc = 326 K), hindering identification of excitonic correlations. A pronounced increase in the terahertz reflectivity manifests following photoexcitation and exhibits a Bose–Einstein condensation-like temperature dependence well below the Tc, suggesting an approach to monitor the exciton condensate dynamics. Nonetheless, dynamic condensate–phonon coupling remains as evidenced by peaks in the enhanced reflectivity spectrum at select infrared-active phonon frequencies, indicating that parametric reflectivity enhancement arises from phonon squeezing. Our results highlight that coherent dynamics can drive parametric stimulated emission.