Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-temperature Néel skyrmions in Fe3GaTe2 stabilized by Fe intercalation into the van der Waals gap

MPG-Autoren
/persons/resource/persons260835

Saha,  Rana
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260281

Meyerheim,  Holger L.
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s44306-024-00024-5.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Saha, R., Meyerheim, H. L., Göbel, B., Mertig, I., & Parkin, S. S. P. (2024). High-temperature Néel skyrmions in Fe3GaTe2 stabilized by Fe intercalation into the van der Waals gap. npj spintronics, 2: 21. doi:10.1038/s44306-024-00024-5.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-61A3-B
Zusammenfassung
Two-dimensional (2D) van der Waals (vdW) magnets that exhibit ferromagnetism at ambient temperature show great promise for spintronic applications. However, until now, only a few pristine or doped 2D magnets have demonstrated the ability to host non-collinear spin textures, thereby limiting their potential applications. Here we directly observe Néel-type skyrmions in the metallic vdW magnetic compound Fe3GaTe2 (FGaT) up to temperatures well above room temperature (≈340 K) in the absence of any external magnetic field. We show that the presence of defects in the structure of FGaT make its structure acentric and therefore compatible with hosting skyrmions that would otherwise not be possible. Indeed, in this regard it is very similar to the closely related compound Fe3GeTe2 (FGT), whose structure with the same space group P3m1 is also realized by defects. Interestingly, however, FGaT accommodates a significantly higher concentration of Fe within the vdW gaps, likely accounting for its enhanced Curie temperature (TC). In addition to the Néel skyrmions observed in the temperature range of 250–340 K, we also detect type-I and -II Bloch-type skyrmionic bubbles in the temperature range of 100–200 K due to an enhanced magnitude of dipole-dipole interactions relative to the Dzyaloshinskii-Moriya exchange interaction. Self-intercalation is thus a highly interesting property of vdW magnets that considerably modifies their fundamental properties.