English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kondo coherence versus superradiance in terahertz radiation-driven heavy-fermion systems

MPS-Authors
/persons/resource/persons126865

Stockert,  Oliver
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yang, C.-J., Woerner, M., Stockert, O., Löhneysen, H. V., Kroha, J., Fiebig, M., et al. (2024). Kondo coherence versus superradiance in terahertz radiation-driven heavy-fermion systems. Physical Review B, 109(23): 235103, pp. 1-6. doi:10.1103/PhysRevB.109.235103.


Cite as: https://hdl.handle.net/21.11116/0000-000F-68BC-9
Abstract
In strongly correlated systems such as heavy-fermion materials, the coherent superposition of localized and mobile spin states leads to the formation of Kondo resonant states, which on a dense, periodic array of Kondo ions develop lattice coherence. Characteristically, these quantum-coherent superposition states respond to a terahertz (THz) excitation by a delayed THz pulse on the scale of the material's Kondo energy scale and hence independent of the pump-light intensity. However, a delayed response is also typical for superradiance in an ensemble of excited atoms. In this case, quantum coherence is established by the coupling to an external, electromagnetic mode and hence dependent on the pump-light intensity. In the present paper, we investigate the physical origin of the delayed pulse, i.e., inherent, correlation-induced versus light-induced coherence, in the prototypical heavy-fermion compound CeCu5.9Au0.1. We study the delay, duration, and amplitude of the THz pulse at various temperatures in dependence on the electric-field strength of the incident THz excitation. We observe a robust delayed response at approximately 6 ps with an amplitude proportional to the amplitude of the incident THz wave. This is consistent with theoretical expectation for the Kondo-like coherence and thus provides compelling evidence for the dominance of condensed-matter versus optical coherence in the heavy-fermion compound. © 2024 American Physical Society.