English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Estimating sliding drop width via side-view features using recurrent neural networks

MPS-Authors
/persons/resource/persons284179

Shumaly,  Sajjad
Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons286267

Darvish,  Fahimeh
Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons240623

Li,  Xiaomei
Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons265586

Kukharenko,  Oleksandra
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48798

Steffen,  Werner
Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons47688

Butt,  Hans-Jürgen
Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons47637

Berger,  Rüdiger
Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41598-024-62194-w.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Shumaly, S., Darvish, F., Li, X., Kukharenko, O., Steffen, W., Guo, Y., et al. (2024). Estimating sliding drop width via side-view features using recurrent neural networks. Scientific Reports, 14(1): 12033. doi:10.1038/s41598-024-62194-w.


Cite as: https://hdl.handle.net/21.11116/0000-000F-684A-A
Abstract
There is no abstract available