Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria

MPG-Autoren
/persons/resource/persons271859

Latorre,  SM       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;
Research Group for Ancient Genomics and Evolution, Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons72607

Burbano,  HA       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;
Research Group for Ancient Genomics and Evolution, Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Backman, T., Latorre, S., Symeonidi, E., Muszyński, A., Bleak, E., Eads, L., et al. (2024). A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria. Science, 384(6701): eado0713. doi:10.1126/science.ado0713.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-6CBD-4
Zusammenfassung
Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.