English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Analyzing User Engagement with TikTok's Short Format Video Recommendations using Data Donations

MPS-Authors
/persons/resource/persons243017

Zannettou,  Savvas
Internet Architecture, MPI for Informatics, Max Planck Society;

/persons/resource/persons287495

Nemeth,  Olivia-Nemes
Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons287497

Ayalon,  Oshrat
Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons281291

Goetzen,  Angelica
Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons144524

Gummadi,  Krishna
Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3613904.3642433.pdf
(Publisher version), 840KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zannettou, S., Nemeth, O.-N., Ayalon, O., Goetzen, A., Gummadi, K., Redmiles, E. M., et al. (2024). Analyzing User Engagement with TikTok's Short Format Video Recommendations using Data Donations. In F. F. Mueller, P. Kyburz, J. R. Williamson, C. Sas, M. L. Wilson, P. Toups Dugas, et al. (Eds.), CHI '24 (pp. 1-16). New York, NY: ACM. doi:10.1145/3613904.3642433.


Cite as: https://hdl.handle.net/21.11116/0000-000F-7088-9
Abstract
There is no abstract available