English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Roadmap on Data-Centric Materials Science

MPS-Authors
/persons/resource/persons75388

Dehm,  Gerhard
Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125143

Freysoldt,  Christoph
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK;

/persons/resource/persons249274

Li,  Yue
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons146095

Liebscher,  Christian
Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons179523

Mianroodi,  Jaber Rezaei
Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons263412

Sasidhar,  Kasturi Narasimha
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons265253

Saxena,  Alaukik
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Bauer, S., Benner, P., Bereau, T., Blum, V., Boley, M., Carbogno, C., et al. (2024). Roadmap on Data-Centric Materials Science. Modelling and Simulation in Materials Science and Engineering, 32(6): 063301. doi:10.1088/1361-651X/ad4d0d.


Cite as: https://hdl.handle.net/21.11116/0000-000F-8236-1
Abstract
Science is and always has been based on data, but the terms "data-centric" and the "4th paradigm of" materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of Artificial Intelligence (AI) and its subset Machine Learning (ML), has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research.