日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Roadmap on data-centric materials science

MPS-Authors
/persons/resource/persons289731

Eibl,  Sebastian
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons299784

Karpov,  Petr
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons109883

Marek,  Andreas
Max Planck Computing and Data Facility, Max Planck Society;

/persons/resource/persons110221

Rampp,  Markus
Max Planck Computing and Data Facility, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bauer, S., Benner, P., Bereau, T., Blum, V., Boley, M., Carbogno, C., Catlow, C. R. A., Dehm, G., Eibl, S., Ernstorfer, R., Fekete, Á., Foppa, L., Fratzl, P., Freysoldt, C., Gault, B., Ghiringhelli, L. M., Giri, S. K., Gladyshev, A., Goyal, P., Hattrick-Simpers, J., Kabalan, L., Karpov, P., Khorrami, M. S., Koch, C. T., Kokott, S., Kosch, T., Kowalec, I., Kremer, K., Leitherer, A., Li, Y., Liebscher, C. H., Logsdail, A. J., Lu, Z., Luong, F., Marek, A., Merz, F., Mianroodi, J. R., Neugebauer, J., Pei, Z., Purcell, T. A. R., Raabe, D., Rampp, M., Rossi, M., Rost, J.-M., Saal, J., Saalmann, U., Sasidhar, K. N., Saxena, A., Sbailò, L., Scheidgen, M., Schloz, M., Schmidt, D. F., Teshuva, S., Trunschke, A., Wei, Y., Weikum, G., Xian, R. P., Yao, Y., Yin, J., Zhao, M., & Scheffler, M. (2024). Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering, 32(6):. doi:10.1088/1361-651X/ad4d0d.


引用: https://hdl.handle.net/21.11116/0000-000F-826A-7
要旨
Science is and always has been based on data, but the terms 'data-centric' and the '4th paradigm' of materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of artificial intelligence and its subset machine learning, has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research.