日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Restricted Open-Shell Hartree–Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings

MPS-Authors
/persons/resource/persons299429

Leyser da Costa Gouveia,  Tiago
Research Group Manganas, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216823

Maganas,  Dimitrios
Research Group Manganas, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)

jp4c00688_si_001.pdf
(付録資料), 974KB

引用

Leyser da Costa Gouveia, T., Maganas, D., & Neese, F. (2024). Restricted Open-Shell Hartree–Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings. The Journal of Physical Chemistry A, 128(25), 5041-5053. doi:10.1021/acs.jpca.4c00688.


引用: https://hdl.handle.net/21.11116/0000-000F-8641-0
要旨
In this work, we present a general spin restricted open-shell Hartree–Fock (ROHF) implementation that is able to generate self-consistent field (SCF) wave functions for an arbitrary configuration state function (CSF). These CSFs can contain an arbitrary number of unpaired electrons in arbitrary spin-couplings. The resulting method is named CSF-ROHF. We demonstrate that starting from the ROHF energy expression, for example, the one given by Edwards and Zerner, it is possible to obtain the values of the ROHF vector-coupling coefficients by setting up an open-shell for each group of consecutive parallel-coupled spins dictated by the unique spin-coupling pattern of any given CSF. To achieve this important and nontrivial goal, we employ the machinery of the iterative configuration expansion configuration interaction (ICE-CI) method, which is able to tackle general CI problems on the basis of spin-adapted CSFs. This development allows for the efficient generation of SCF spin-eigenfunctions for systems with complex spin-coupling patterns, such as polymetallic chains and metal clusters, while maintaining SCF scaling with system size (quadratic or less, depending on the specific algorithm and approximations chosen).