English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Theory for Durotactic Axon Guidance

MPS-Authors
/persons/resource/persons298938

Franze,  Kristian
Abteilung Franze, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Oliveri, H., Franze, K., & Goriely, A. (2021). Theory for Durotactic Axon Guidance. Physical Review Letters, 126(11), 118101. doi:10.1103/PhysRevLett.126.118101.


Cite as: https://hdl.handle.net/21.11116/0000-000F-8720-4
Abstract
During the development of the nervous system, neurons extend bundles of axons that grow and meet other neurons to form the neuronal network. Robust guidance mechanisms are needed for these bundles to migrate and reach their functional target. Directional information depends on external cues such as chemical or mechanical gradients. Unlike chemotaxis that has been extensively studied, the role and mechanism of durotaxis, the directed response to variations in substrate rigidity, remain unclear. We model bundle migration and guidance by rigidity gradients by using the theory of morphoelastic rods. We show that, at a rigidity interface, the motion of axon bundles follows a simple behavior analogous to optic ray theory and obeys Snell's law for refraction and reflection. We use this powerful analogy to demonstrate that axons can be guided by the equivalent of optical lenses and fibers created by regions of different stiffnesses.