English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spectroscopic and Interferometric Sum-Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces

MPS-Authors
/persons/resource/persons268181

Niemann,  Richarda       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons300152

Müller,  Niclas S.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons244718

Wasserroth,  Sören       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21937

Paarmann,  Alexander       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Niemann, R., Müller, N. S., Wasserroth, S., Lu, G., Wolf, M., Caldwell, J. D., et al. (2024). Spectroscopic and Interferometric Sum-Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces. Advanced Materials, 36(33): 2312507. doi:10.1002/adma.202312507.


Cite as: https://hdl.handle.net/21.11116/0000-000F-8DBC-F
Abstract
Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub-wavelength spatial resolution and highly-resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide-field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro-microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle-dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non-perturbative tool to image polariton hybridization and propagation.