English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum

MPS-Authors

Bertram,  Peter A.
Department of Biochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps- Universität, Marburg;

Schmitz,  Ruth A.
Department of Biochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps- Universität, Marburg;

/persons/resource/persons254760

Thauer,  Rudolf K.       
Department of Biochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps- Universität, Marburg;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bertram, P. A., Schmitz, R. A., Linder, D., & Thauer, R. K. (1994). Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Archives of Microbiology, 161(3), 220-228. doi:10.1007/BF00248696.


Cite as: https://hdl.handle.net/21.11116/0000-000F-91F7-6
Abstract
Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, <0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.