English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases

MPS-Authors

Hedderich,  Reiner
Department of Biochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps- Universität, Marburg;

Koch,  Jürgen
Department of Biochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps- Universität, Marburg;

/persons/resource/persons254760

Thauer,  Rudolf K.       
Department of Biochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps- Universität, Marburg;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hedderich, R., Koch, J., Linder, D., & Thauer, R. K. (1994). The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. European Journal of Biochemistry, 225(1), 253-261. doi:10.1111/j.1432-1033.1994.00253.x.


Cite as: https://hdl.handle.net/21.11116/0000-000F-9251-0
Abstract
The genes hdrA, hdrB and hdrC, encoding the three subunits of the iron-sulfur flavoprotein heterodisulfide reductase, have been cloned and sequenced. HdrA (72.19 kDa) was found to contain a region of amino acid sequence highly similar to the FAD-binding domain of pyridine-nucleotide-dependent disulfide oxidoreductases. Additionally, 110 amino acids C-terminal to the FAD-binding consensus, a short polypeptide stretch (VX2CATID) was detected which shows similarity to the region of thioredoxine reductase that contains the active-site cysteine residues (VX2CATCD). These findings suggest that HdrA harbors the site of heterodisulfide reduction and that the catalytic mechanism of the enzyme is similar to that of pyridine-nucleotide-dependent thioredoxin reductase. HdrA was additionally found to contain four copies of the sequence motif CX2CX2CX3C(P), indicating the presence of four [4Fe-4S] clusters. Two such sequence motifs were also present in HdrC (21.76 kDa), the N-terminal amino acid sequence of which showed sequence similarity to the ?-subunit of the anaerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. HdrC is therefore considered to be an electron carrier protein that contains two [4Fe-4S] clusters. HdrB (33.46 kDa) did not show sequence similarity to other known proteins, but appears to possess a C-terminal hydrophobic α-helix that might function as a membrane anchor. Although hdrB and hdrC are juxtaposed, these genes are not near hdrA.