Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Towards efficient and accurate input for data-driven materials science from large-scale all-electron density functional theory (DFT) simulations

MPG-Autoren

Kokott,  S.
The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society;
Molecular Simulations from First Principles e.V.;

Carbogno,  C.
The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society;

/persons/resource/persons21421

Rossi,  M.       
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Scheffler,  M.
The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kokott, S., Marek, A., Merz, F., Karpov, P., Carbogno, C., Rossi, M., et al. (2024). Towards efficient and accurate input for data-driven materials science from large-scale all-electron density functional theory (DFT) simulations. Modelling and Simulation in Materials Science and Engineering, 32(6), 28-31. doi:10.1088/1361-651X/ad4d0d.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-937C-0
Zusammenfassung
Science is and always has been based on data, but the terms 'data-centric' and the '4th paradigm' of materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of artificial intelligence and its subset machine learning, has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research.