English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-Resolution Cryogenic Spectroscopy of Single Molecules in Nanoprinted Crystals

MPS-Authors
/persons/resource/persons288059

Musavinezhad,  Mohammad
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

/persons/resource/persons201166

Renger,  Jan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201220

Utikal,  Tobias
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201072

Götzinger,  Stephan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

/persons/resource/persons201175

Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;
Sandoghdar Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Musavinezhad, M., Renger, J., Zirkelbach, J., Utikal, T., Hail, C. U., Basché, T., et al. (2024). High-Resolution Cryogenic Spectroscopy of Single Molecules in Nanoprinted Crystals. ACS Nano, 18, 21886-21893. doi:10.1021/acsnano.4c02003.


Cite as: https://hdl.handle.net/21.11116/0000-000F-9395-2
Abstract
We perform laser spectroscopy at liquid helium temperatures (T = 2 K) to investigate single dibenzoterrylene (DBT) molecules doped in anthracene crystals of nanoscopic height fabricated by electrohydrodynamic dripping. Using high-resolution fluorescence excitation spectroscopy, we show that zero-phonon lines of single molecules in printed nanocrystals are nearly as narrow as the Fourier-limited transitions observed for the same guest–host system in the bulk. Moreover, the spectral instabilities are comparable to or less than one line width. By recording super-resolution images of DBT molecules and varying the polarization of the excitation beam, we determine the dimensions of the printed crystals and the orientation of the crystals’ axes. Electrohydrodynamic printing of organic nano- and microcrystals is of interest for a series of applications, where controlled positioning of quantum emitters with narrow optical transitions is desirable.