English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Vesicular Glutamate Transporter Expression Ensures High-Fidelity Synaptic Transmission at the Calyx of Held Synapses

MPS-Authors
/persons/resource/persons182487

Wojcik,  Sonja M.
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182104

Brose,  Nils       
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Publisher Version
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Nakakubo, Y., Abe, S., Yoshida, T., Takami, C., Isa, M., Wojcik, S. M., et al. (2020). Vesicular Glutamate Transporter Expression Ensures High-Fidelity Synaptic Transmission at the Calyx of Held Synapses. Cell Reports, 32(7): 108040. doi:10.1016/j.celrep.2020.108040.


Cite as: https://hdl.handle.net/21.11116/0000-000F-A3CF-0
Abstract
Recycling of synaptic vesicles (SVs) at presynaptic terminals is required for sustained neurotransmitter release. Although SV endocytosis is a rate-limiting step for synaptic transmission, it is unclear whether the rate of the subsequent SV refilling with neurotransmitter also influences synaptic transmission. By analyzing vesicular glutamate transporter 1 (VGLUT1)-deficient calyx of Held synapses, in which both VGLUT1 and VGLUT2 are co-expressed in wild-type situation, we found that VGLUT1 loss causes a drastic reduction in SV refilling rate down to ∼25% of wild-type values, with only subtle changes in basic synaptic parameters. Strikingly, VGLUT1-deficient synapses exhibited abnormal synaptic failures within a few seconds during high-frequency repetitive firing, which was recapitulated by manipulating presynaptic Cl− concentrations to retard SV refilling. Our data show that the speed of SV refilling can be rate limiting for synaptic transmission under certain conditions that entail reduced VGLUT levels during development as well as various neuropathological processes.