English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cell crawling mediates collective cell migration to close undamaged epithelial gaps

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Anon, E., Serra-Picamal, X., Hersen, P., Gauthier, N. C., Sheetz, M. P., Trepat, X., et al. (2012). Cell crawling mediates collective cell migration to close undamaged epithelial gaps. PNAS, 109(27), 10891-10896. doi:10.1073/pnas.1117814109.


Cite as: https://hdl.handle.net/21.11116/0000-000F-B450-B
Abstract
Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 mu m was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion.