English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Revealing in-plane grain boundary composition features through machine learning from atom probe tomography

MPS-Authors
/persons/resource/persons249272

Zhou,  Xuyang
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons224643

Wei,  Ye
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons212741

Zhao,  Huan
Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons180724

Darvishi Kamachali,  Reza
Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhou, X., Wei, Y., Zhao, H., Vogel, F., Darvishi Kamachali, R., Thompson, G. B., et al. (2021). Revealing in-plane grain boundary composition features through machine learning from atom probe tomography. Talk presented at DPG Conference 2021. Online, Germany. 2021-09-27 - 2021-10-01.


Cite as: https://hdl.handle.net/21.11116/0000-000F-C4B3-9
Abstract
There is no abstract available